

MATHEMATICAL METHODS Teach Yourself Series

Topic 5: Transformations of Functions

A: Level 14, 474 Flinders Street Melbourne VIC 3000 T: 1300 134 518 W: tssm.com.au E: info@tssm.com.au

© TSSM 2016 Page 1 of 8

Contents

Transformations of Functions	33
Type 1 – Functions	3
	3
	4
Type 2 – Matrices	5
	5
Review Questions	6
	6
boldholis to the view Questions	

Transformations of Functions

Type 1 - Functions

As it appears in Unit 1

All graphs can be transformed by the following:

Reflections: -f(x)

Reflection across x axis. y coordinates on the original functions are multiplied by -1.

f(-x)

Reflection across y axis. x coordinates on the original functions are multiplied by -1.

Dilations af(x)

Dilation of a from x axis (parallel to y axis) – y coordinates on the original functions are

multiplied by "a".

f(ax)

Dilation of $\frac{1}{x}$ from y axis (parallel to x axis) – x coordinates on the original functions are

multiplied by " $\frac{1}{2}$ ".

Translations f(x)+k

Translation of k along y axis (from x axis) – y coordinates on the original functions have

"k" added to them.

f(x-h)

Translation of h along x axis (from y axis) - x coordinates on the original functions have

"h" added to them.

Watch for the tricky questions – The dilation from *y*

The transformations given out of order

© TSSM 2016 Page 3 of 8

Example

Describe the transformations that have been applied to $f(x) = \sqrt{x}$ to result in the function $f(x) = -2\sqrt{3(x-1)} + 4$.

Answer:

Reflection across the *x* axis.

Dilation of 2 units from the x axis and $\frac{1}{3}$ of a unit from the y axis.

Translation of 1 units along *x* axis and 4 units along *y* axis.

Calculator skills

Define functions

Type transformation in function form once function is defined.

© TSSM 2016 Page 4 of 8

Type 2 – Matrices

As it appears in Unit 3

Reflection in x axis $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ Reflection in y axis $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ Reflection across y = x $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ Dilation from x axis $\begin{bmatrix} 1 & 0 \\ 0 & a \end{bmatrix}$ Dilation from y axis $\begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix}$ Translation along y axis $\begin{bmatrix} h \\ 0 \end{bmatrix}$

Note: You put the transformations in to the matrices as you read them.

• Have to solve the matrix equation: X = TX' + B

$$X = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$T = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$
 ie dilation and reflection matrix
$$X = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$B = \begin{bmatrix} h \\ k \end{bmatrix}$$
 ie translation matrix

- Solve for X'
- Swap x for x' and y for y' in the rule that is being transformed

Solutions to Review Questions

1.

$$f(x) = 3f(-(x-2))$$
$$= \frac{3}{-(x-2)}$$
$$= \frac{3}{2-x}$$

2.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -3 & 0 \\ 0 & -2 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 2 \\ 7 \end{bmatrix}$$

$$= \begin{bmatrix} -3x + 2 \\ -2y + 7 \end{bmatrix}$$

 $x = \frac{x'-2}{-3}$ and $y = \frac{y'-7}{-2}$ Substitute these into the function to be transformed and transpose to the answer.

$$f(x) = 2\sqrt{-\frac{1}{3}(x-2)} + 7$$

3.

$$-2f\left(\frac{x}{3}\right) + 3 = -\frac{2}{\left(\frac{x}{3}\right)^2} + 3$$

$$f(x) = -\frac{18}{x^2} + 3$$

4.

Transpose function to $\frac{2}{-(x-2)}$ + 4 before describing transformations.

Reflection in y axis

Dilation of 2 units from x axis

Translation of 2 units along *x* and 4 units along *y*.

5. Apply transformations in order to get:

$$-2f\left(\frac{x}{3}\right) + 3 = -2e^{\frac{x}{3}} + 3$$

6.

Set up the following matrix equation: $\begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 1 & 1 \end{bmatrix}$

$$x' = 4x \qquad \qquad y' = -\frac{y}{2} + 3$$

$$x = \frac{\chi'}{4} \qquad \qquad y = -2(y' - 3)$$

Make these substitutions and transpose to make y' the subject

$$y = -\frac{1}{128}x^3 + 3$$

7.

Apply the transformations -5f(2x)+3

$$y = -5\log_e(2x) + 3$$

© TSSM 2016 Page 8 of 8